Abstract

AbstractSteady shear viscosities and dynamic moduli of polymer composites, consisting of combinations of crosslinked beads and matrices of polystyrene (PS) and polymethacrylates (PMA), are measured in a cone and plate rheometer. Viscosities and moduli were very sensitive to chemical composition. Crosslinked beads of identical composition to the matrix exhibited the lowest viscosity enhancements at low shear rates and the lowest moduli in dynamic mechanical analysis. The effects of bead concentration on rheological behavior were compared for PS and PMMA beads in a PMMA matrix. PMMA beads produce small effects, whereas PS beads yield highly non‐Newtonian systems in PMMA, showing a yield stress of 1100 Pa at 30 wt% filler loading and dynamic moduli independent of frequency. We suggest that rheological behavior reflects the state of dispersion of beads in the matrix. Beads identical in composition to the matrix yield uniform dispersions. We propose that uniform and stable bead dispersions exhibit the lowest viscosity and moduli. Beads that cluster in the matrix, such as PS beads in PMMA, exhibit highly non‐Newtonian behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.