Abstract
This paper addresses parameter drift in stochastic models. We define a notion of context that represents invariant, stable-over-time behavior and we then propose an algorithm for detecting context changes in processing a stream of data. A context change is seen as model failure, when a probabilistic model representing current behavior is no longer able to "fit" newly encountered data. We specify our stochastic models using a first-order logic-based probabilistic modeling language called Generalized Loopy Logic (GLL). An important component of GLL is its learning mechanism that can identify context drift. We demonstrate how our algorithm can be incorporated into a failure-driven context-switching probabilistic modeling framework and offer several examples of its application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.