Abstract

One of the major concerns when employing digital I&C system in nuclear power plant is digital system may introduce new failure mode, which differs with previous analog I&C system. Various techniques are under developing to analyze the hazard originated from software faults in digital systems. Preliminary hazard analysis, failure modes and effects analysis, and fault tree analysis are the most extensive used techniques. However, these techniques are static analysis methods, cannot perform dynamic analysis and the interactions among systems. This research utilizes “simulator/plant model testing” technique classified in (IEEE Std 7-4.3.2-2003, 2003. IEEE Standard for Digital Computers in Safety Systems of Nuclear Power Generating Stations) to identify hazards which might be induced by nuclear I&C software defects. The recirculation flow system, control rod system, feedwater system, steam line model, dynamic power-core flow map, and related control systems of PCTran–ABWR model were successfully extended and improved. The benchmark against ABWR SAR proves this modified model is capable to accomplish dynamic system level software safety analysis and better than the static methods. This improved plant simulation can then futher be applied to hazard analysis for operator/digital I&C interface interaction failure study, and the hardware-in-the-loop fault injection study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call