Abstract

Using an efficient numerical scheme that exploits spatial symmetries and spin-parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe$_{12}$. The largest calculation involves the Fe$_{12}$ ring which spans a Hilbert space dimension of about 145 million for M$_s$=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agrees well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. Spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and the first excited state defining the inverse of moment of inertia. We have studied the quantum dynamics of Fe$_{10}$ as a representative of ferric wheels. We use the low-lying states of Fe$_{10}$ to solve exactly the time-dependent Schr\"odinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of magnetization which is dependent on the amplitude of the {\it ac} field. We have also studied the torque response of Fe$_{12}$ as a function of magnetic field, which clearly shows spin-state crossover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.