Abstract
Since its discovery, the superconducting phase in water-intercalated sodium cobaltates NaxCoO2 yH2O (x~0.3, y~1.3) has posed fundamental challenges in terms of experimental investigation and theoretical understanding. By a combined dynamical mean-field and renormalization group approach, we find an anisotropic chiral d+id wave state as a consequence of multi-orbital effects, Fermi surface topology, and magnetic fluctuations. It naturally explains the singlet property and close-to-nodal gap features of the superconducting phase as indicated by experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.