Abstract

A model capable of simulating proppant transport through hydraulic fracture network is developed and summarized in this paper. The proppant transport model (PTM) is able to capture multiple proppant transport patterns, including suspension, saltation and creeping. These patterns are first identified, and then quantified to establish proppant transport equations. The governing equations are programed into a three-dimensional, finite-difference model to simulate the proppant transport process. The PTM is coupled to a previously developed hydraulic fracture network propagation model, which updates essential input parameters such as fracture geometry, velocity distribution and pressure profile for each step. In every step, the proppant transport model extracts values for these parameters and solves the mass transport equations for all three patterns. Finally, the PTM generates proppant concentration, fracture conductivity and distribution throughout the created fracture network and predicts, at the end of the designed treatment the propped stimulated reservoir volume (PSRV) – a critical indicator of long-term stimulation effectiveness for hydraulically fractured oil/gas reservoirs. Parametric Studies of several important treatment, operational, reservoir, and geomechanical parameters are done in this paper to illustrate the impact of each factor on the PSRV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.