Abstract
The Taylor cone formed at the tip of the syringe used for delivering the solution plays an important role in jet formation. This study presents a novel multiphysics model to simulate the dynamic processes occurring within the cone jet from a flat spinneret and a single needle spinneret. The electric field, volume fraction and velocity magnitude of the polymer jet ejecting from two different kinds of spinnerets are calculated by the multiphysics simulation model. A high-speed camera is employed to capture the jet formed by the Taylor cone. The simulation results are validated by comparison with experimental results. It is found that the spinneret configuration could be the key factor in determining cone morphology in the electrospinning process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.