Abstract
This paper deals with the development and evaluation of mathematical models related with Boost type DC–DC converters operating in Boundary Conduction Mode, including the expansion to a parallel cellular architecture considering the interleaved technique. Initially, an average value-based approach was applied to derive the mathematical models for the three available modes of operation (CCM, DCM and BCM), employing its classic form, which considers the duty cycle disturbance while maintaining a constant switching frequency, and its adherences in describing the behavior due to the BCM’s frequency variation. Afterward, an innovative model based on the disturbance in the switching period is proposed for BCM condition. The proposed models were analyzed in different complexity levels, divided into two transfer function orders, referred as reduced and full order. The developed models considering the operation of a single converter were extended to a parallel architecture of N converters. The modes of operation in DCM and BCM were adopted to allow the developed models’ analysis, as well as evaluate and design the converter’s operation, where PI controllers were employed. The simulations were executed in the MATLAB software’s Simulink environment, with the system implemented by models through subsystems and embedded functions and by switching circuits with assistance of the SymPowerSystems toolbox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.