Abstract
An open challenge in bioinformatics is the analysis of the sequenced metagenomes from the various environments. Several studies demonstrated bacteria classification at the genus level using k-mers as feature extraction where the highest value of k gives better accuracy but it is costly in terms of computational resources and computational time. Spaced k-mers method was used to extract the feature of the sequence using 111 1111 10001 where 1 was a match and 0 was the condition that could be a match or did not match. Currently, deep learning provides the best solutions to many problems in image recognition, speech recognition, and natural language processing. In this research, two different deep learning architectures, namely Deep Neural Network (DNN) and Convolutional Neural Network (CNN), trained to approach the taxonomic classification of metagenome data and spaced k-mers method for feature extraction. The result showed the DNN classifier reached 90.89 % and the CNN classifier reached 88.89 % accuracy at the genus level taxonomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.