Abstract

SummaryThe paper presents a computationally efficient algorithm to integrate a probabilistic, non‐Gaussian parameter estimation approach for nonlinear finite element models with the performance‐based earthquake engineering (PBEE) framework for accurate performance evaluations of instrumented civil infrastructures. The algorithm first utilizes a minimum variance framework to fuse predictions from a numerical model of a civil infrastructure with its measured behavior during a past earthquake to update the parameters of the numerical model that is, then, used for performance prediction of the civil infrastructure during future earthquakes. A nonproduct quadrature rule, based on the conjugate unscented transformation, forms an enabling tool to drive the computationally efficient model prediction, model‐data fusion, and performance evaluation. The algorithm is illustrated and validated on Meloland Road overpass, a heavily instrumented highway bridge in El Centro, CA, which experienced three moderate earthquake events in the past. The benefits of integrating measurement data into the PBEE framework are highlighted by comparing damage fragilities of and annual probabilities of damages to the bridge estimated using the presented algorithm with that estimated using the conventional PBEE approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.