Abstract
Explaining how two machine learning classification models differ in their behaviour is gaining significance in eXplainable AI, given the increasing diffusion of learning-based decision support systems. Human decision-makers deal with more than one machine learning model in several practical situations. Consequently, the importance of understanding how two machine learning models work beyond their prediction performances is key to understanding their behaviour, differences, and likeness.Some attempts have been made to address these problems, for instance, by explaining text classifiers in a time-contrastive fashion. In this paper, we present MERLIN, a novel eXplainable AI approach that provides contrastive explanations of two machine learning models, introducing the concept of model-contrastive explanations. We propose an encoding that allows MERLIN to work with both text and tabular data and with mixed continuous and discrete features. To show the effectiveness of our approach, we evaluate it on an extensive set of benchmark datasets. MERLIN is also implemented as a python-pip package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.