Abstract

Traditional model compression techniques are dependent on handcrafted features and require domain experts, with a tradeoff between model size, speed, and accuracy. This study proposes a new approach toward resolving model compression problems. Our approach combines reinforcement-learning-based automated pruning and knowledge distillation to improve the pruning of unimportant network layers and the efficiency of the compression process. We introduce a new state quantity that controls the size of the reward and an attention mechanism that reinforces useful features and attenuates useless features to enhance the effects of other features. The experimental results show that the proposed model is superior to other advanced pruning methods in terms of the computation time and accuracy on CIFAR-100 and ImageNet dataset, where the accuracy is approximately 3% higher than that of similar methods with shorter computation times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.