Abstract

Three model compounds of poly(tetramethylene terephthalamide) or 4T Nylon have been synthesized and characterized using single crystal X-ray diffractometry, infrared spectroscopy, and 13CCP/MAS nmr spectroscopy. The model compounds are the para-substituted N,N′-tetramethylene dibenzamides, where the substituents are the—OMe, —tBu, —CN, and —CH3 groups. The crystal structure determinations reveal three distinct conformations for the CO—NH—(CH2)4—NH—CO sequence of atoms. The conformation is all trans for OMe, tgtttg−t for the tBu substituent, and tsttts−t for the CN substituent ([Formula: see text], [Formula: see text], and [Formula: see text]). In all three derivatives, the dihedral angle between the aromatic ring and the amide plane is around 30°. The OMe and tBu para-substituted molecules are interconnected by nearly linear hydrogen bonds of normal N … O distances. However, for the CN derivative the N … O distance is exceptionally short, 2.402(4) Å. On the basis of its infrared and solid state nmr spectra, it is proposed that N,N′-tetramethylene di-para-methyl benzamide has a crystal structure comparable to that of its unsubstituted analog. The methylenic sequence of the parent polyamide, 4T Nylon, has the tgtttg−t conformation. Furthermore, the polyamide chains form sheets within which the chains, parallel to one another, are connected through hydrogen bonds. Keywords: polyamide, crystal structure, solid-state nmr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call