Abstract

To improve the lithium ion conductivities of currently used electrolytes, it is critical to understand how the transport of the lithium ions within the matrix is influenced by their interactions with solvating moieties. Therefore, well-defined model compounds based on cyclotriphosphazene (CTP) and hexaphenylbenzene (HPB) cores were prepared, bearing side groups containing the structural element of ethylene carbonate, which is the common solvent for lithium salts used as electrolytes in Li-ion batteries. All model compounds were highly pure and thermally stable up to at least 250 °C, covering a broad range of glass transition temperatures from −79 °C up to +3.5 °C. The temperature-dependent ionic conductivities of the blends follow a William−Landel−Ferry (WLF) type behavior with the corresponding glass transition temperatures as reference. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes, implying that the coordination between the cyclic carbonate functionality and the Li-ion is apparently too tight to allow for fast Li-ion dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.