Abstract
Model complexity plays an essential role in its selection, namely, by choosing a model that fits the data and is also succinct. Two-part codes and the minimum description length have been successful in delivering procedures to single out the best models, avoiding overfitting. In this work, we pursue this approach and complement it by performing further assumptions in the parameter space. Concretely, we assume that the parameter space is a smooth manifold, and by using tools of Riemannian geometry, we derive a sharper expression than the standard one given by the stochastic complexity, where the scalar curvature of the Fisher information metric plays a dominant role. Furthermore, we compute a sharper approximation to the capacity for exponential families and apply our results to derive optimal dimensional reduction in the context of principal component analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.