Abstract

We compare the complexities of the following two model checking problems: checking whether a linear-time formula is satisfied by all paths (which we call universal model checking) and checking whether a formula is satisfied by almost all paths (which we call fair model checking here). For many interesting classes of linear-time formulas, both problems have the same complexity: for instance, they are PSPACE-complete for LTL. In this paper, we show that fair model checking can have lower complexity than universal model checking, viz., we prove that fair model checking for L(F∞) can be done in time linear in the size of the formula and of the system, while it is known that universal model checking for L(F∞) is co-NP-complete. L(F∞) denotes the class of LTL formulas in which (F∞) is the only temporal operator. We also present other new results on the complexity of fair and universal model checking. In particular, we prove that fair model checking for RLTL is co-NP-complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.