Abstract

The results of calculations indicate that a previously proposed model for the transition state in "borderline" substitution reactions can be generalized and, as a result, the observed differences in the carbon-13 and deuterium isotope effects of SN1, SN2, and "borderline" reactions rationalized. Although the conclusions may apply more generally, the standard reaction investigated is the solvolysis of benzyl bromide. The importance of resonance interaction with the phenyl ring, the significance of the product- or reactant-like character of the transition state, and the influence of the magnitude of force constants in determining isotope effects are examined. The temperature dependence of kinetic isotope effects in solvolysis is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.