Abstract

Microvibrations, generally defined as low-amplitude vibrations at frequencies up to 1 kHz, are of critical importance in a number of areas. It is now well known that, in general, the suppression of such microvibrations to acceptable levels requires the use of active control techniques which, in turn, require sufficiently accurate and tractable models of the underlying dynamics on which to base controller design and initial performance evaluation. Previous work has developed a systematic procedure for obtaining a finite-dimensional state-space model approximation of the underlying dynamics from the defining equations of motion, which has then been shown to be a suitable basis for robust controller design. In this paper, the experimental validation of this model prior to experimental studies is described in order to determine the effectiveness of the designed controllers. This includes details of the experimental rig and also the use of methods for assessing the safety of the resulting structure against uncertain parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call