Abstract
We propose a one-layer neural network for solving a class of constrained optimization problems, which is brought forward from the MDF continuous hot-pressing process. The objective function of the optimization problem is the sum of a nonsmooth convex function and a smooth nonconvex pseudoconvex function, and the feasible set consists of two parts, one is a closed convex subset ofRn, and the other is defined by a class of smooth convex functions. By the theories of smoothing techniques, projection, penalty function, and regularization term, the proposed network is modeled by a differential equation, which can be implemented easily. Without any other condition, we prove the global existence of the solutions of the proposed neural network with any initial point in the closed convex subset. We show that any accumulation point of the solutions of the proposed neural network is not only a feasible point, but also an optimal solution of the considered optimization problem though the objective function is not convex. Numerical experiments on the MDF hot-pressing process including the model building and parameter optimization are tested based on the real data set, which indicate the good performance of the proposed neural network in applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.