Abstract

Background & Aims: Hypersecretion of gallbladder mucin has been proposed as a pathogenic factor in gallstone formation. We investigated whether mucin secretion is modulated by biliary constituents using normal, well-differentiated dog gallbladder epithelial cells. Methods: Model biles or bile salts were applied to monolayers of epithelial cells. Mucin secretion was studied by measuring the secretion of [ 3H] N-acetyl- d-glucosamine-labeled glycoproteins. Results: Model biles with different cholesterol saturation indices increased mucin secretion by the cells to an average 251% after 5 hours of incubation ( P < 0.01). Mucin secretion remained elevated during a 24-hour period, suggesting a sustained effect on mucin secretion. There was no relation between the cholesterol or phospholipid concentration and the extent of stimulation of mucin secretion. Taurocholate caused a dose-dependent increase in mucin secretion, suggesting that bile salt was the bile component responsible for the stimulatory effect. At a concentration of 0.5 mmol/L, only the more hydrophobic bile salts taurochenodeoxycholate and taurodeoxycholate, but not the hydrophylic bile salts taurocholate and tauroursodeoxycholate, stimulated mucin secretion ( P < 0.01). Conclusions: Bile salts play an important role in the regulation of mucin secretion. A shift in the bile salt composition of bile towards the more hydrophobic bile salts may cause mucin hypersecretion, thereby initiating cholesterol gallstone formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.