Abstract

Polyvinyl chloride specimens were subjected to three different constant loads at ambient temperature, and the creep is monitored as a function of time. After a certain time, the load was withdrawn and the strain recovery was followed with time. Although the deformational behavior of such material is conventionally described by the Burger model consisting of elastic, viscoelastic, and viscous components, in the present work, it is shown that the whole creep recovery process is reversible and is described by three viscoelastic components connected in series. Depending on the relative value of the observation and the relaxation times, the viscoelastic components appear pseudo- elastic or viscous. It is found that the model parameters evaluated from the creep data fail to predict the recovery data in both the initial and the end phases, while those from the recovery data can partially reproduce the creep data (satisfactorily in the late phase and with high deviation in the initial phase). The model parameters vary with stress values, but with a good approximation, they could be averaged for a certain stress range to describe creep processes for a specified time period. The proposed model describes creep data better than the Finley and the Weibull models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call