Abstract

PurposeAdolescent scoliosis is one of the common pediatric spinal diseases which has a high risk of progression due to the rapid growth of the skeleton during the growing stage therefore needs regular clinical monitoring including X-rays. Because X-rays could lead to ionizing radiation-related health problems, an ionizing radiation-free, non-invasive method is presented here to estimate the degree of scoliosis and to potentially support the medical assessment.MethodsThe radiation-free body scanner provides a 3D surface scan of the torso. A basic 3D structure of the human ribcage and vertebral column was modeled and simulated with computer-aided design software and finite element method calculation. For comparison with X-rays, courses of vertebral columns derived from 3D torso images and 3D models were analyzed with respect to their apex positions and angles.ResultsThe methods show good results in the estimation of the apex positions of scoliosis. Strong correlations (R = 0.8924) were found between the apex and Cobb angle from X-rays. Similar correlations (R = 0.8087) was obtained between the apex angles extracted from X-rays and the combination of torso scan images with 3D model simulations. Promising agreement was obtained between the spinal trajectories extracted from X-ray and 3D torso images.ConclusionsVery strong correlations suggest that the apex angle could potentially be used for scoliosis assessment in follow-up examinations in complement to the Cobb angle. However, further improvements of the methods and tests on a larger number of data set are necessary before their introduction into the clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call