Abstract

A state space model for the determination of dual phase distributions in a holographic moiré in the presence of nonsinusoidal waveforms, random noise, and miscalibration of the piezoelectric (PZT) devices is proposed. The extraction of these phase terms requires incorporating two PZTs into the moiré setup. A Toeplitz approximation method (TAM) is applied for phase determination, and modification to the Toeplitz covariance matrix formed from the phase-shifted moiré fringes by application of a denoising step in the state-feedback matrix is proposed. This step ensures that the phase terms can even be estimated at a signal-to-noise ratio much lower than that of the original TAM or by our previously suggested polynomial based method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.