Abstract

The present paper deals with the modelling and control of a solar reactor designed to produce syngas, by exploiting concentrated solar power. A model of the reactor based on the thermodynamic equilibrium is developed. Two model-based predictive control strategies are proposed: the first strategy (MPC strategy 1) aims to maintain the reactor's temperature at its nominal value whereas the second strategy (MPC strategy 2) aims to maintain the reactor's temperature at its nominal value, while maximizing the use of solar energy. Finally, these strategies are compared to a reference strategy, which is based on a combination of a rule-based controller and an adaptive PID controller with optimized gains. The robustness of the MPC controller to forecast errors is also studied by testing different DNI forecasting models. Parts of this paper were published as journal articleKarout, Y.; Curcio, A.; Eynard, J.; Thil, S.; Rodat, S.; Abanades, S.; Vuillerme, V.; Grieu, S. Model-Based Predictive Control of a Solar Hybrid Thermochemical Reactor for High-Temperature Steam Gasification of Biomass. Clean Technol. 2023, 5, 329-351. https://doi.org/10.3390/cleantechnol5010018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.