Abstract

A statistical method to predict tropospheric amplitude scintillation parameters along Earth-space microwave links from meteorological data is proposed. The evaluation of the mean value and the variance of the refractive-index structure constant and of the scintillation power (i.e. the variance of the log-amplitude fluctuations of the received electromagnetic field) is carried out from conventional radio-sounding measurements. A large radio-sounding data set, collected in Northern Italy over ten years is utilized to simulate clear-air amplitude scintillation variance at microwaves and millimeter-waves on slant paths. Scintillation statistics of interest for link-budget design are also derived from the radio-sounding data set for short and long-term applications. Scintillation prediction formulas, based on measurements of surface temperature and relative humidity, are also derived and regression coefficient tables are given on an hourly and a monthly basis. Comparisons of short-term and long-term prediction results with Olympus down-link measurements at 19.8 GHz are shown and discussed. A model investigation about the statistical correlation between scintillation power and brightness temperature is performed, deriving an extension of the estimation methods to include integrated water vapor measurements from ground-based microwave radiometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call