Abstract
High-frequency deep brain stimulation (HF-DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi) and globus pallidus externa (GPe) are often considered as effective methods for the treatment of Parkinson’s disease (PD). However, the stimulation of a single nucleus by HF-DBS can cause specific physical damage, produce side effects and usually consume more electrical energy. Therefore, we use a biophysically-based model of basal ganglia-thalamic circuits to explore more effective stimulation patterns to reduce adverse effects and save energy. In this paper, we computationally investigate the combined DBS of two nuclei with the phase deviation between two stimulation waveforms (CDBS). Three different stimulation combination strategies are proposed, i.e., STN and GPe CDBS (SED), STN and GPi CDBS (SID), as well as GPi and GPe CDBS (GGD). Resultantly, it is found that anti-phase CDBS is more effective in improving parkinsonian dynamical properties, including desynchronization of neurons and the recovery of the thalamus relay ability. Detailed simulation investigation shows that anti-phase SED and GGD are superior to SID. Besides, the energy consumption can be largely reduced by SED and GGD (72.5% and 65.5%), compared to HF-DBS. These results provide new insights into the optimal stimulation parameter and target choice of PD, which may be helpful for the clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.