Abstract
In this paper, we propose a model-based control system design for autonomous flight and guidance control of a small-scale unmanned helicopter. Small-scale unmanned helicopters have been studied by way of fuzzy and neural network theory, but control that is not based on a model fails to yield good stabilization performance. For this reason, we design a mathematical model and a model-based controller for a small-scale unmanned helicopter system. In order to realize a fully autonomous small-scale unmanned helicopter, we have designed a MIMO attitude controller and a trajectory controller equipped with a Kalman filter-based LQI for a small-scale unmanned helicopter. The design of the trajectory controller takes into consideration the characteristics of attitude closed-loop dynamics. Simulations and experiments have shown that the proposed scheme for attitude control and position control is very useful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.