Abstract

Over the last decade, there has been a growing appreciation for the use of in vitro and in vivo infection models to generate robust and informative nonclinical PK/PD data to accelerate the clinical translation of treatment regimens. The objective of this study was to develop a model-based “learn and confirm” approach to help with the design of combination regimens using in vitro infection models to optimise the clinical utility of existing antibiotics. Static concentration time-kill studies were used to evaluate the PD activity of polymyxin B (PMB) and meropenem against two carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates; BAA2146 (PMB-susceptible) and BRKP67 (PMB-resistant). A mechanism-based model (MBM) was developed to quantify the joint activity of PMB and meropenem. In silico simulations were used to predict the time-course of bacterial killing using clinically-relevant PK exposure profiles. The predictive accuracy of the model was further evaluated by validating the model predictions using a one-compartment PK/PD in vitro dynamic infection model (IVDIM). The MBM captured the reduction in bacterial burden and regrowth well in both the BAA2146 and BRKP67 isolate (R2 = 0.900 and 0.940, respectively). The bacterial killing and regrowth predicted by the MBM were consistent with observations in the IVDIM: sustained activity against BAA2146 and complete regrowth of the BRKP67 isolate. Differences observed in PD activity suggest that additional dose optimisation might be beneficial in PMB-resistant isolates. The model-based approach presented here demonstrates the utility of the MBM as a translational tool from static to dynamic in vitro systems to effectively perform model-informed drug optimisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.