Abstract
In this paper we present a novel vision-based markerless hand pose estimation scheme with the input of depth image sequences. The proposed scheme exploits both temporal constraints and spatial features of the input sequence, and focuses on hand parsing and 3D fingertip localization for hand pose estimation. The hand parsing algorithm incorporates a novel spatial-temporal feature into a Bayesian inference framework to assign the correct label to each image pixel. The 3D fingertip localization algorithm adapts a recently developed geodesic extrema extraction method to fingertip detection with the hand parsing algorithm, a novel path-reweighting method and K-means clustering in metric space. The detected 3D fingertip locations are finally used for hand pose estimation with an inverse kinematics solver. Quantitative experiments on synthetic data show the proposed hand pose estimation scheme can accurately capture the natural hand motion. A simulated water-oscillator application is also built to demonstrate the effectiveness of the proposed method in human-computer interaction scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.