Abstract
AbstractThis paper presents a model-based control solution for large inertia systems controlled by a fast digital hydraulic valve. The solution is based on model-based force control and it is shown that the cylinder chamber pressures have first order dynamics with the proper parameter selection. The robust stability is analyzed under unknown load mass, bulk modulus, and delay, and it is shown that a simple cascaded P + PID controller results in good control performance and robustness. The simulated results show smooth and stable response with good tracking performance despite large variations in the load mass and bulk modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.