Abstract

The use of the Intrusion Detection Systems (IDS) still has unresolved problems, namely the lack of accuracy in attack detection, resulting in false-positive problems and many false alarms. Machine learning is one way that is often utilized to overcome challenges that arise during the implementation of IDS.. We present a system that uses a machine learning approach to detect network attacks and send attack alerts in this study. The CSE-CICIDS2018 Dataset and Model-Based Feature Selection technique are used to assess the performance of eight classifier algorithms in identifying network attacks in order to determine the best algorithm. The resulting XGBoost Model is chosen as the model that provides the highest performance results in this comparison of machine learning models, with an accuracy rate of 99 percent for two-class classification and 98.4 percent for multi-class classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.