Abstract

Much research works address model-free or signal processing and spectral analysis-based fault detection schemes for rotor eccentricity fault in induction motors. Nevertheless, despite existing reliable fault-embedded eccentricity mathematical models such as the winding function method an integrated model-based fault detection algorithm for detecting this fault yet has not been fully explored. This article presents model-based mixed-eccentricity fault detection and diagnosis for induction motors. The proposed algorithm can successfully detect faults and their severity using stator currents. To determine the values of the fault-related parameters, an adaptive synchronization-based parameter estimation algorithm is introduced using particle swarm optimization. Simulation and experiments demonstrate the ability of the algorithm to detect and diagnose these faults. The proposed algorithm can be employed to estimate the parameters, in addition to slowly time varying and abruptly changing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call