Abstract

Abstract This work presents a comprehensive chiller model based on the scientific fundamentals and engineering principles adapted to the design of a chiller and to the analysis of extensive, detailed test data. The chiller studied is a 16 kW (4.6 refrigerant tons) LiBr–H2O double-effect absorption chiller, which has been installed and tested in a Micro Building Cooling Heating and Power (BCHP) system at Carnegie Mellon University. The developed steady-state computational performance model for the chiller has been refined by measured data from absorption chiller tests under various conditions, and used to analyze chiller performance and to improve the chiller design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call