Abstract
In this paper, we aim to study model-based event-triggered control for a class of uncertain switched discrete-time systems composed of stabilizable and unstabilizable subsystems. A nominal model is introduced at the controller side to form a dynamic controller so that it can provide a kind of approximate estimate of the system state for system input even the overall switched discrete-time system is running in open-loop during any two consecutive event-triggered instants. By using multi-Lyapunov function method and the average dwell time switching strategy, stability conditions given in linear matrix inequality form for the closed-loop switched discrete-time system are derived. The design of control gains is also given. Finally, a numerical example and a physical example are provided to verify the effectiveness and usefulness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Franklin Institute
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.