Abstract

In this preliminary work, we consider the problem of detecting cyber-attacks in a linear system equipped with a Model Predictive Controller, where the feedback loop is closed over a non-ideal network, and the process is subject to a random Gaussian disturbance. We adopt a model-based approach in order to detect anomalies, formalizing the problem as a binary hypothesis test. The proposed approach exploits the analytical redundancy obtained by computing partially overlapping nominal system trajectories over a temporal sliding window, and propagating the disturbance distributions along them. The recorded data over such window is then used to define a probabilistic consistency index at each time step in order to make a decision about the presence of possible attacks. Preliminary simulation results show the effectiveness of the proposed attack-detection method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.