Abstract

The aerospace industry is one of the leading figures in the development and improvement of techniques for the design of new products. One of the most promising developments of the last decades is the exploitation of digital models that make it possible to evaluate design solutions and simulate the behavior of the individual systems and their interactions. The goal is to be able to predict and analyze all aspects an aircraft much in advance of its industrialization in order to heavily reduce the time and costs of product development and to guarantee flexibility to test a multitude of solutions. The main issue in this context is the complexity of creating models that are capable of accurately sizing and simulating multiple interacting systems, thus considering the constraints imposed by the need for their mutual compatibility. The present contribution introduces two interconnected models regarding an aircraft system, in particular, the landing gear, that make it possible to size its main components and subsystems and to use the found parameters to populate a dynamic model that simulates the behavior of the aircraft during landing. These models provide a preliminary digitalization of the system itself and of the design process as well, thereby making it possible to define a potential configuration and to test it in a dynamic virtual environment, thus taking into account the interaction between the individual subsystems. The model was tested through three use cases, differentiated by class and scope, which made it possible to compare and validate the obtained results with actual values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.