Abstract

In this paper, we investigate new design methods for data-driven digital signal processing (DSP) systems that are targeted to resource- and energy-constrained embedded environments, such as UAVs, mobile communication platforms and wireless sensor networks. Signal process- ing applications, such as keyword matching, speaker identification, and face recognition, are of great importance in such environments. Due to critical application constraints on energy consumption, real-time performance, computational resources, and core application accuracy, the design spaces for such applications are highly complex. Thus, conventional static methods for configuring and executing such embedded DSP systems are severely limited in the degree to which processing tasks can adapt to current operating conditions and mission requirements. We address this limitation by developing a novel design framework for multi-mode, data driven signal processing systems, where different application modes with complementary trade-offs are selected, configured, executed, and switched dynamically, in a data-driven manner. We demon- strate the utility of our proposed new design methods on an energy-constrained, multi-mode face detection application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.