Abstract

To provide storage capacities for the emerging markets of electromobility and stationary applications, the increase of productivity within the production of lithium‐ion batteries is crucial. A special focus lies on the assembly of the electrode–separator–compound as a bottleneck process within battery cell production. Consequently, novel process technologies arise for high‐throughput assembly technologies. However, complex process–product interactions drive complexity within the design of new processes. Process models, experiments, and simulations support the process design but must depict nonlinear material behavior. This increases the expanse in time and resources for the process design. Herein, an approach to reduce the effort of process design using the example of the assembly of the electrode–separator–compound is shown. The approach aims to identify and select solutions within the process design. Analytical, simulative, and experimental methods and tools are applied within the approach to investigate the design solutions at different levels of detail. The practical application of the approach is demonstrated in two case studies within the assembly of the electrode–separator–compound. The results of the case studies show a profound choice of the process design and a gain in knowledge on process–product–interactions of the novel processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.