Abstract
This paper presents an approach for determining the sizes and three-dimensional (3D) positions of nanoparticles from a through-focus series of high-angle annular dark-field scanning transmission electron microscopy images. By assuming spherical particles with uniform density, the sizes and 3D positions can be derived via Wiener deconvolution using a series of kernels prepared by the convolution of the 3D point spread function of the electron beam and the 3D density distribution of spheres with different radii. This process is referred to as a model-based deconvolution. Four 3D datasets with a volume size of 148 × 148 × 560 nm3 were obtained from the four sets of 256 high-angle annular dark-field scanning transmission electron microscopy images of 256 × 256 pixels taken from the same field of view under the through-focus condition. The 3D positions and radii of 14 particles in each 3D dataset were derived using the model-based deconvolution for ∼8 min. The observation errors of the 3D position were estimated as σx ≅ σy ≅ 0.3 nm and σz < 1.6 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.