Abstract

In this paper, we consider the learning process of a probabilistic self-organizing map (PbSOM) as a model-based data clustering procedure that preserves the topological relationships between data clusters in a neural network. Based on this concept, we develop a coupling-likelihood mixture model for the PbSOM that extends the reference vectors in Kohonen's self-organizing map (SOM) to multivariate Gaussian distributions. We also derive three expectation-maximization (EM)-type algorithms, called the SOCEM, SOEM, and SODAEM algorithms, for learning the model (PbSOM) based on the maximum-likelihood criterion. SOCEM is derived by using the classification EM (CEM) algorithm to maximize the classification likelihood; SOEM is derived by using the EM algorithm to maximize the mixture likelihood; and SODAEM is a deterministic annealing (DA) variant of SOCEM and SOEM. Moreover, by shrinking the neighborhood size, SOCEM and SOEM can be interpreted, respectively, as DA variants of the CEM and EM algorithms for Gaussian model-based clustering. The experimental results show that the proposed PbSOM learning algorithms achieve comparable data clustering performance to that of the deterministic annealing EM (DAEM) approach, while maintaining the topology-preserving property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.