Abstract

In recent years, processor technology has evolved towards multicore processors, which include multiple processing units (cores) in a single package. Those cores, having their own private caches, often share a higher level cache memory dedicated to each processor die. This multi-level cache hierarchy in multicore processors raises the importance of cache utilization problem. Assigning parallel-running software components with common data to processor cores that do not share a common cache increases the number of cache misses. In this paper we present a novel approach that uses model-based information to guide the OS scheduler in assigning appropriate core affinities to software objects at run-time. We build graph models of software and cache hierarchies of processors and devise a graph matcher algorithm that provides mapping between these two graphs. Using this mapping we obtain candidate core sets that each software object can be affiliated with at run-time. These affiliations are determined based on the idea that software components that have the potential to share common data at run-time should run on cores that share a common cache. We also develop an object dispatcher algorithm that keeps track of object affiliations at run-time and dispatches objects by using the information from the compile-time graph matcher. We apply our approach on design pattern implementations and two different application program running on servers using CFS scheduling. Our results show that cache-aware dispatching based on information obtained from software model, decreases number of cache misses significantly and improves CFS’ scheduling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call