Abstract

Endosseous implants are well-established in modern dentistry. However, without appropriate therapeutic intervention, progressive peri-implant bone loss may lead to failing implants. Conventionally, the particularly relevant vestibular jawbone thickness is monitored using radiographic 3D imaging methods. Ionizing radiation, as well as imaging artifacts caused by metallic implants and superstructures are major drawbacks of these imaging modalities. In this study, a high frequency ultrasound (HFUS) based approach to assess the vestibular jawbone thickness is being introduced. It should be emphasized that the presented method does not require ultrasound penetration of the jawbone. An in-vitro study using two porcine specimens with inserted endosseous implants has been carried out to assess the accuracy of our approach. The implant of the first specimen was equipped with a gingiva former while a polymer superstructure was mounted onto the implant of the second specimen. Ultrasound data has been acquired using a 4 degree of freedom (DOF) high frequency (<50MHz) laboratory ultrasound scanner. The ultrasound raw data has been converted to polygon meshes including the surfaces of bone, gingiva, gingiva former (first specimen) and superstructure (second specimen). The meshes are matched with a-priori acquired 3D models of the implant, the superstructure and the gingiva former using a best-fit algorithm. Finally, the vestibular peri-implant bone thickness has been assessed in the resulting 3D models. The accuracy of this approach has been evaluated by comparing the ultrasound based thickness measurement with a reference measurement acquired with an optical extra-oral 3D scanner prior to covering the specimens with gingiva. As a final result, the bone thicknesses of the two specimens were measured yielding an error of −46±89μm (first specimen) and 70±93μm (second specimen).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.