Abstract

Reductions in tuberculosis (TB) transmission have been instrumental in lowering TB incidence in the United States. Sustaining and augmenting these reductions are key public health priorities. We fit mechanistic transmission models to distributions of genotype clusters of TB cases reported to the Centers for Disease Control and Prevention during 2012-2016 in the United States and separately in California, Florida, New York, and Texas. We estimated the mean number of secondary cases generated per infectious case (R0) and individual-level heterogeneity in R0 at state and national levels and assessed how different definitions of clustering affected these estimates. In clusters of genotypically linked TB cases that occurred within a state over a 5-year period (reference scenario), the estimated R0 was 0.29 (95% confidence interval [CI], .28-.31) in the United States. Transmission was highly heterogeneous; 0.24% of simulated cases with individual R0>10 generated 19% of all recent secondary transmissions. R0 estimate was 0.16 (95% CI, .15-.17) when a cluster was defined as cases occurring within the same county over a 3-year period. Transmission varied across states: estimated R0s were 0.34 (95% CI, .3-.4) in California, 0.28 (95% CI, .24-.36) in Florida, 0.19 (95% CI, .15-.27) in New York, and 0.38 (95% CI, .33-.46) in Texas. TB transmission in the United States is characterized by pronounced heterogeneity at the individual and state levels. Improving detection of transmission clusters through incorporation of whole-genome sequencing and identifying the drivers of this heterogeneity will be essential to reducing TB transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.