Abstract

Fast detection of objects in a home or office environment is relevant for robotic service and assistance applications. In this work we present the automatic localization of a wide variety of differently shaped objects scanned with a laser range sensor from one view in a cluttered setting. The daily-life objects are modeled using approximated Superquadrics, which can be obtained from showing the object or another modeling process. Detection is based on a hierarchical RANSAC search to obtain fast detection results and the voting of sorted quality-of-fit criteria. The probabilistic search starts from low resolution and refines hypotheses at increasingly higher resolution levels. Criteria for object shape and the relationship of object parts together with a ranking procedure and a ranked voting process result in a combined ranking of hypothesis using a minimum number of parameters. The experimental evaluation of the method and experiments from cluttered table top scenes demonstrate the effectiveness and robustness of the approach, feasible for real world object localization and robot grasp planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.