Abstract
In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.