Abstract

• Model-assisted DoE (mDoE) combines mechanistic mathematical models and DoE. • mDoE-toolbox is used to develop two microalgae bioprocesses. • The effects of pH and light intensity on biomass growth in a photobioreactor are studied. • The influence of light duration and intensity on algal growth in shake flasks is studied. • mDoE is a time-saving and useful method for microalgae bioprocess design. This study assesses the performance of the model-assisted Design of Experiment (mDoE) software toolbox for the design of two microalgae bioprocesses. The mDoE-toolbox was applied to maximize biomass growth for Desmodesmus pseudocommunis in a photobioreactor by varying the light intensity and pH and for Chlorella vulgaris in shake flasks, by varying the light intensity and duration. For both case studies, a mathematical mechanistic model was applied. In the first study only one experiment was necessary to adapt the mathematical model and identify a combination of light intensity and pH that improved biomass yield, as confirmed experimentally. In the second study, no well-established model was available for the specific experimental arrangement. On the basis of the literature, a mathematical model was constructed and a first cycle of mDoE was performed, thus identifying the desired factor combinations. Experiments confirmed the high biomass yield but revealed shortcomings of the model. The model was improved and a second cycle of mDoE was performed. The recommended factor combinations from both cycles were comparable. The mDoE was found to be a time-saving, cost-effective and useful method enabling the identification of factor combinations leading to high biomass production for the design of two different microalgae bioprocesses with low experimental effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.