Abstract

A two-dimensional mathematical model was developed for a porous heterogeneous catalytic fixed bed reactor. The model took into account the effect of heat generated by adsorption of reactants on the catalyst surface and heat transfer from the fluid phase to the surroundings which have significant effect on reactor performance especially at reactor hotspot. The developed model predicted the partial oxidation of methanol to formaldehyde on FeO/MoO3 catalyst, a complex reaction system. Excellent agreement was achieved when the resultant simulated results were compared with experimental data in the literature. The proposed model predicted the location of hotspot at a dimensionless distance of 0.4413 (= 0.0309 m) the same as the experiment value but with a temperature of 619 K compared with experimental value of 622 K. The conventional heterogeneous and pseudo-homogeneous models predicted the hotspot temperature to be about 8 K and 34 K lower than the experimental value respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.