Abstract

Many minimum energy (energy-efficient) routing protocols have been proposed in recent years. However, very limited effort has been made in studying routing overhead, route setup time, and route maintenance issues associated with these protocols. Without a careful design, an energy-efficient routing protocol can perform much worse than a normal routing protocol. In this paper, we first show that the minimum energy routing schemes in the literature could fail without considering the routing overhead involved and node mobility. We then propose a more accurate analytical model to track the energy consumptions due to various factors, and a simple energy-efficient routing scheme PEER to improve the performance during path discovery and in mobility scenarios. Our simulation results indicate that compared to a conventional energy-efficient routing protocol, PEER protocol can reduce up to 2/3 path discovery overhead and delay, and 50 percent transmission energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.