Abstract

An analytical model of the gate leakage current in ultrathin gate nitrided oxide MOSFETs is presented. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semi-empirical gate leakage current formulation. The tunneling-in and tunneling-out current are calculated by modifying the expression of the direct tunneling current model of BSIM. For a microscopic interpretation of the ITAT process, resonant tunneling (RT) through the oxide barrier containing potential wells associated with the localized states is proposed. We employ a quantum-mechanical model to treat electronic transitions within the trap potential well. The ITAT current model is then quantitatively consistent with the summation of the resonant tunneling current components of resonant energy levels. The 1/f noise observed in the gate leakage current implies the existence of slow processes with long relaxation times in the oxide barrier. In order to verify the proposed ITAT current model, an accurate method for determining the device parameters is necessary. The oxide thickness and the interface trap density of the gate oxide in the 20-30 /spl Aring/ thickness range are evaluated by the quasi-static capacitance-voltage (C-V) method, dealing especially with quantum-mechanical and polysilicon effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.