Abstract

Plants are subject to diseases caused by pathogens, many of which are transmitted by herbivorous arthropod vectors. To understand plant disease dynamics, we studied a minimum hybrid model combining consumer-resource (herbivore-plant) and susceptible-infected models, in which the disease is transmitted bi-directionally between the consumer and the resource from the infected to susceptible classes. Model analysis showed that: (i) the disease is more likely to persist when the herbivore feeds on the susceptible plants rather than the infected plants, and (ii) alternative stable states can exist in which the system converges to either a disease-free or an endemic state, depending on the initial conditions. The second finding is particularly important because it suggests that the disease may persist once established, even though the initial prevalence is low (i.e. the R(0) rule does not always hold). This situation is likely to occur when the infection improves the plant nutritive quality, and the herbivore preferentially feeds on the infected resource (i.e. indirect vector-pathogen mutualism). Our results highlight the importance of the eco-epidemiological perspective that integration of tripartite interactions among host plant, plant pathogen and herbivore vector is crucial for the successful control of plant diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call